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PREFACE 

This paper reports an analytical solution to a two-sided nuclear exchange using 

simple linear programs.  This solution is proposed as an alternative to MESA, a model 

developed at Los Alamos National Laboratory that uses an optimizing search algorithm.  

Like the MESA model, the exchange is cast in terms of game theory, using linear 

approximations and an optimal allocation defined by a user-specified objective function.  

Solutions are better using linear programs instead of optimizing searches, and the 

solutions are many times faster. 

Catherine D. Farmer thanks Mr. Philip L. Major, IDA Vice President for Planning 
& Evaluation, for support from the IDA summer intern program.  The authors also thank 
Dr. Phillip Gould for reviewing this paper and providing helpful comments. 

iii 

 UNCLASSIFIED  



 UNCLASSIFIED 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally blank.) 

iv 

 UNCLASSIFIED  



 UNCLASSIFIED 

CONTENTS 

 

EXECUTIVE SUMMARY ....................................................................................... ES-1 

 I. A LINEAR PROGRAMMING APPROACH TO COMPLEX GAMES:  AN 
APPLICATION TO NUCLEAR EXCHANGE MODELS........................... 1 

A. Introduction...............................................................................................  1 

B. Overview of the MESA Model .................................................................  2 

C. A New Approach for Solving the MESA Problem...................................  4 

1. Hypothesis...........................................................................................  4 
2. Examination ........................................................................................  4 
3. ONEGULP..........................................................................................  6 
4. The Two-Sided Exchange...................................................................  6 

 

D. Discussion of Results................................................................................  9 

1. Both Values Smaller in ONEGLUP Than in MESA..........................  9 
2. ONEGLUP’s F(1) Value Smaller and F(2) Value Larger Than MESA’s 10 
3. ONEGLUP’s F(1) Value Larger and F(2) Value Smaller  
 Than MESA’s .....................................................................................  11 
4. Both Values Larger in ONEGLUP Than in MESA............................  13 

 
 II. CONCLUSION.............................................................................................. 15 

 

Appendixes 

A. Model File and Sample Data File in AMPL to Find Optimal Allocation of 
Side Two Weapons 

B. Calculation of Side One Payout Matrix 

C. ONEGULP Model and Sample Data File for the Optimal Allocation of Side 
One Weapons 

D. Glossary 

E. Distribution List for IDA Document D-2743 

v 

 UNCLASSIFIED  



 UNCLASSIFIED 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally blank.) 

vi 

 UNCLASSIFIED  



 UNCLASSIFIED 

LIST OF FIGURES 

 1. F(1) Versus Side Two Weapons Fired Against Force Targets ................ 12 

 

 

vii 

 UNCLASSIFIED  



 UNCLASSIFIED 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally blank.)

viii 

 UNCLASSIFIED  



 UNCLASSIFIED 

LIST OF TABLES 

 1. A Simple Side-Two Payout Matrix..........................................................  5 

2. A Subtle Side-Two Payout Matrix...........................................................  5 

3. Variance in F(2) Along an  Indifference Curve ....................................... 11 

 4. Variation in Results with Varying Seed Number .................................... 14 

 

ix 

 UNCLASSIFIED  



 UNCLASSIFIED 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally blank.) 

x 

 UNCLASSIFIED  



 UNCLASSIFIED 

EXECUTIVE SUMMARY 

The Defense Threat Reduction Agency’s (DTRA) Advanced Systems and 

Concepts Office (ASCO) tasked IDA to evaluate MESA, a nuclear exchange model 

developed at Los Alamos National Laboratory (LANL).  MESA, the Multiple Exchange 

of Strategic Arsenals, optimizes the allocation of weapons against targets.  However, in 

the resulting IDA report, it was noted that MESA produces “almost pure” solutions.  That 

is, warheads do not exhaust one weapon-target combination before being allocated to 

another weapon-target combination.  However, if warheads are allocated to the “pure” 

solution through hand calculation, a better objective function value results. 

Therefore, an alternative solution was sought.  We approached the development 

of this new solution with the assumption that, if the linear approximations in MESA are 

acceptable, the whole problem should be linear.  Thus, once a good weapon-target 

combination is found, the derivative of the objective function should remain constant 

until either weapons or targets are exhausted.  By this method, the optimal allocation of 

weapons should be a “pure” solution. 

With the linear approximations already contained in MESA, we were able to find 

a completely linear solution.  The parameter space was explored systematically and 

thoroughly.  The solutions appear to be as good as, or better than, MESA’s in all cases 

tested.  They are analytical and do not depend on initial search conditions as MESA’s do.  

And the solutions are produced in computer runs that are two orders of magnitude faster. 
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I.  A LINEAR PROGRAMMING APPROACH TO  
COMPLEX GAMES:  AN APPLICATION TO NUCLEAR 

EXCHANGE MODELS 

A. INTRODUCTION 

The Advanced Systems and Concepts Office (ASCO) of the Defense Threat 
Reduction Agency (DTRA) tasked the Institute for Defense Analyses (IDA) to review 
MESA (Multiple Exchange of Strategic Arsenals), a computer program developed at the 
Los Alamos National Laboratory (LANL).  MESA is a nuclear exchange model that can 
determine a country’s optimal allocation of warheads given the country’s arsenal and war 
goals as well as the opposition’s arsenal and war goals. 

The IDA review of MESA1 noted that under special conditions the optimal 

weapon allocation produced by MESA results in an almost “pure” solution.  That is, any 

specific weapon tends to be allocated almost entirely against one particular target type.  

Hand calculation shows that the actual “pure” solution (allocating warheads in a certain 

weapon-target combination until either all warheads or all targets have been exhausted) 

results in a better objective function value than the almost pure solutions typically found 

by MESA. 

The motivation for this study was to investigate the origins of these “almost pure” 

results and to explore an alternative approach to a solution.  This report gives an 

overview of the MESA model and demonstrates an alternative approach that finds better 

solutions and cuts run time dramatically. 

                                                 
1  Evaluation of MESA, a Nuclear Exchange Model, to Explore War Goals, Arsenals, and Stability, IDA 

Paper P-3659, November, 2001, pp. A1 – A5. 
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B. OVERVIEW OF THE MESA MODEL 

The MESA model consists of a set of three nested optimizations.2  The outer 

optimization gives the percentage of weapons to be used in the current exchange.  

Unfortunately, the long run times of the inner optimizations have rendered the 

automation of this optimization impractical, preventing MESA from solving multiple 

exchanges of arsenals. Therefore, the user performs this step.  In the middle nested 

optimization, weapons are allocated between counterforce and countervalue targets.  In 

general, weapons are force targets and everything else is a value target.  In the innermost 

box of the optimization, warheads are allocated to each target type within the 

counterforce and countervalue groupings.   

MESA requires the user to input the damage expectancy (DE) and the required 

damage (RD).  DE is an indicator of the goodness of a weapon.  There is a damage 

expectancy assigned for each weapon on Side One against each target on Side Two, for 

both force and value targets, and similarly for the weapons on Side Two in retaliation 

against Side One targets.  The “required” damage is the damage required by the attacking 

side for the attack to be considered a success.  In all cases considered here, RD is set to 

be the same for all weapons in an attack. Our alternative approach to solving the 

optimization utilizes the more common Pk, the “probability of kill,” which is a measure of 

the likelihood that the warhead will destroy a given target.  As with the DE, each 

weapon-target combination has a Pk.  The relationship between these values is: 

Pk = log (1 – DE) / log (1 – RD) 

The innermost nested optimization in MESA uses a linear program to determine 

the best allocation of weapons that have been assigned to either counterforce or 

countervalue.  Certain approximations are needed to make the payoff functions linear.  

For example, the effects of multiple weapons used against a target are additive.  That is, 

two weapons each with a Pk of 0.4 have a total Pk of 0.8 rather than 0.64.  MESA 

constrains the cumulative Pk such that it cannot be greater than one.  To mimic fratricide 

                                                 
2  Ibid., pp. 2. 
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constraints, MESA allows no more than two warheads against any given target.  

Additionally, the number of destroyed targets cannot exceed the number of targets 

present.  That is to say, Pk times the number of allocated weapons must be less than the 

number of targets present. 

MESA has available several objective functions for which the user can find an 

optimal allocation of weapons.  In this study, the simplest, and original, objective 

function was used in all cases.  MESA attempts to minimize this objective function, 

henceforth “F”, which is defined as follows: 

F = DS + λ ( DG – DI ) 

where DS = Damage Suffered, DG = Damage Goal, and DI = Damage Inflicted.  The 

damage goal, in all cases in this study, equals the total number of value targets on the 

opposing side.  The values for damage suffered and damage inflicted are found by 

multiplying the weapon allocation against value targets by the appropriate Pks. λ  is a 

value assigned by each side to indicate its willingness to accept damage as compared to 

inflicting damage.  That is, a λ of 0.2 reflects an indifference between destroying five 

enemy targets or preserving one friendly target. 

To confirm that we completely understood the outputs produced by MESA, we 

worked through a process of reproducing these outputs by hand.  Aware of the basic 

constraints and inputs, the first approach was to ensure that calculating Pk as defined 

above and multiplying this value by the number of warheads allocated in the MESA 

output would yield the F values calculated by MESA.  We were able to do this exactly.   

Once we were able to reproduce the MESA results by hand, we were able to make 

small adjustments in the MESA results, converting almost “pure” solutions to truly pure 

solutions.  We were able to show that the pure solutions were as good as or better than 

the MESA-produced solutions, that is, they generated a value of F that was equal to or 

lower than the MESA value.  With the simple arsenals3 used here, MESA runs in 15 to 45 

                                                 
3  In the simple arsenal, each side has five weapon types and two value target types. 
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minutes on an 800 MHz Pentium III computer.  The fact that we could produce improved 

results by hand in a couple of minutes suggested that something was amiss. 

C. A NEW APPROACH FOR SOLVING THE MESA PROBLEM 

1. Hypothesis 
After confirming our understanding of Pk, we faced the problem of reproducing 

the allocation of weapons found in MESA (or finding better allocations than MESA’s).  

We developed a hypothesis to account for the almost “pure” solutions that MESA tended 

to find.  This hypothesis is based on the premise that the whole problem should be linear, 

because the linear objective function is combined with the linearized payout functions.  

Further, we speculated that once an optimal weapon-target combination is found, the 

derivative of F remains constant until either targets or weapons are exhausted.  In this 

case, the optimal allocation will result in a “pure” solution.  However, MESA produces 

almost “pure” solutions only because of limitations of the simulated annealing 

optimization, whereby weapon allocations are tested until the difference between 

consecutive allocation tests is so small that the allocations are considered to be “good 

enough.”  Therefore, we set out to see whether, with the approximations already 

contained in MESA, we could find a completely linear solution. 

2. Examination 
To solve this problem, we started at the end and worked backward through the 

process.  We first looked at the case of the retaliator firing at the first striker, but with no 

degradation of his arsenal.  In this manner, we can find the optimal allocation of Side 

Two’s4 weapons when his arsenal is untouched.  Because he is the second striker, he 

cannot improve his objective function by allocating weapons to counterforce targets, so 

all warheads should be aimed at Side One’s value targets.  The allocation of Side Two’s 

weapons was calculated by looking at a simple payout matrix where Side Two attempts 

                                                 
4  MESA calls the two sides “Side One” and “Side Two” so that Side One could be the second striker.  

However, we always refer to the first striker as “Side One” and the second striker as “Side Two.” 
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to gain the maximum payout from the matrix (entries of the matrix are ultimately the Pk 

of each weapon against the given target) times the target value (in all cases in this study, 

each target has a value of one).   

The naïve solution to such a matrix problem is to pick the best weapon-target 

combination, then the second best combination from the remaining combinations, and so 

on.  Take the matrix in Table 1, assuming there exists one of each type of weapon and 

one of each type of target and a maximum allocation of one weapon per target: 

Table 1.  A Simple Side-Two Payout Matrix 

Target Weapon 
1 2 

1 0.9 0.7 
2 0.3 0.8 

 

In this example, the naïve solution works well.  The best weapon-target 

combination is weapon one-target one.  Therefore, weapon one “picks” target one and 

weapon two is left to fire against target two.  The payout is 1.7 (0.9 + 0.8), which is the 

best payout possible with the given weapons and targets.   

However, the solution is sometimes not as straightforward as it is in this case. 

There are certainly cases where both weapons reach their optimal payout by firing at 

target one.  If this occurs, which weapon gets priority?  Table 2 illustrates a matrix that 

poses this problem, taking again one of each target type and one of each weapon type 

with no more than one weapon allocated to each target. 

Table 2.  A Subtle Side-Two Payout Matrix 

Target Weapon 
1 2 

1 0.9 0.7 
2 0.8 0.3 
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Because there are only two possible allocations of the weapons, the reader can 

easily see that the best solution is for weapon one to fire against target two while weapon 

two fires at its most lucrative target, target one.  The logic of this choice is that the 

attacker “loses less” by moving weapon one to its second best choice than he would lose 

by moving weapon two (0.2 compared to 0.5).  However, the solution to such a problem 

cannot be solved by hand when there are a dozen weapons and equally many targets, with 

different numbers of each type of weapon and target. 

3. ONEGULP 
The solution was found by writing ONEGULP, Optimized Nuclear Exchange 

Games Using Linear Programming.  ONEGULP is a linear program in AMPL, a 

mathematical programming language developed at Bell Labs.  Relying on the same main 

constraint used in MESA of Pk being linear, this program can solve the optimal payout 

for a 17x17 matrix in a few seconds.  The model file and an example data file can be 

found in Appendix A.  By taking cases with all possible relationships between the 

number of targets and the number of weapons, we became convinced that the program 

would find the optimal allocation under all conditions.   

The model in Appendix A can solve the optimal allocation of weapons for one 

side against the other with no retaliation.  However, this study looks at a two-sided 

exchange: Side One fires on Side Two, and Side Two is able to retaliate with whatever 

weapons it has remaining.  The goal is to find the optimal allocation for Side One given 

the war goals, arsenal, and Pks of both sides.  Therefore, the final program must 

determine how many weapons to allocate to Side Two’s targets, which includes both 

value targets, which contribute directly to reducing Side One’s objective function, and 

force targets, which contribute indirectly to Side One’s utility by potentially increasing 

the damage suffered by Side One if they are not attacked. 

4. The Two-Sided Exchange 
Taking the two-sided exchange into account proved to be more difficult.  Side 

One must recognize that Side Two’s optimal allocation will change as its number of 
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weapons changes.  For example, in Table 2 above, if Side Two has 100 warheads of each 

type of weapon, it will follow the optimal allocation found in Appendix A.  However, 

what happens if Side One destroys one of Side Two’s warheads in an attack?  The answer 

depends on which weapon is destroyed.  If weapon one is destroyed, then the optimal 

allocation will not change—the 100 warheads of weapon two will be allocated to target 

one, and the remaining 99 warheads of weapon one will be allocated to target two.  

However, if a warhead in the weapon two arsenal is destroyed, the optimal allocation will 

shift.  The 99 remaining warheads of weapon two will be allocated to target one, but 

weapon one’s allocation will change; one warhead will shift and be fired at target one 

while the remaining 99 continue to be fired at target two.5   

Analyzing the target choice by comparing the objective function outputs provides 

a clearer picture.  With 200 weapons, Side Two can obtain a maximum payout of 150.  

With one less weapon, that payout can be reduced to either 149.3 or 149.4.  Side One 

wants to minimize the possible damage done by Side Two, so it shoots at weapon one to 

reduce the payout to 149.3.6  When choosing the Side Two weapons upon which it should 

fire, Side One must find the weapon that creates the largest decrease in payout.  In order 

to find the desired force target, Side One must look at the weapon with the highest Pk for 

all targets, not just the weapon with the highest Pk for the optimal allocation of weapons.  

The weapon that fulfills this requirement is also the weapon that will result in the largest 

decrease in F.  This weapon will be fired upon until either it or the weapon shooting at it 

is exhausted.  At this point, the process of finding the weapon resulting in the largest 

decrease in F is repeated.  In this manner, the derivative of F remains constant until the 

weapon-target combination is depleted.  When the weapon-target combination changes, 

the derivative of F will also change, but will again remain constant until the next shift in 

allocation. 

                                                 
5  Note: For simplicity in discussion, the assumption of one warhead per target is maintained, this 

constraint will be lifted in the final ONEGULP model. 
6  In this part of the discussion, the assumption is made that all Side One weapons have the same Pk 

against all Side Two weapons.  Following this logic, it will be easy to incorporate the Side One Pk s in 
the final payout matrix. 

7 

 UNCLASSIFIED  



 UNCLASSIFIED  

Incorporating this logic into ONEGULP required appropriately defining the 

payout matrix described earlier.  Within the payout matrix for Side One, there are two 

components: one of weapons against force targets (weapons) and one of weapons against 

value targets.  The payout for a weapon against a value target is simply defined as λ  

times the Pk of the weapon-target combination.  The payout for a weapon against force 

target can be calculated by multiplying the Pk of that weapon-weapon combination times 

the ∆ F(1) of the Side Two weapon, where ∆ F(1) is the change in the Side One objective 

function that results from destroying that weapon.  ∆ F(1) is found for each Side Two 

weapon with the following formula: 

- ∆ F(1) = max (Pk2) – (max (PkC) – PkA) 

where max (Pk2) equals the maximum Pk of the Side Two warhead against any Side One 

value targets; max (PkC)7 equals the maximum Pk of any Side Two weapons against the 

value target specified by max (Pk2); and PkA equals the Pk of the optimal weapon-target 

combination for the Side Two weapon specified by max (PkC).  Appendix B demonstrates 

an example of the calculation of the Side One payout matrix.  Each value in the matrix 

gives the value that will be subtracted from Side One’s objective function where the 

starting objective function value is defined as the objective function Side One would have 

if it did not fire any warheads, but was fired upon.  Because Side One wants to minimize 

its objective function, it will find the allocation that maximizes the payout matrix.  

With this payout matrix as an input, a program similar to the one discussed earlier 

was written to find the optimal allocation of warheads by Side One (the code for this 

program can be found in Appendix C).  Because we could not mathematically prove that 

this solution always finds the minimum objective function value, we explored the space 

of all feasible conditions to test our model.  These tests include all possible combinations 

between the number of weapons and the number of targets for each side.  Then, each of 

these combinations was tested with higher and lower λs and increasing the number of 
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warheads per platform for Side Two.  A total of over 250 cases were tested.  While the 

mathematical proof eluded us, this thorough testing procedure provided compelling 

evidence supporting our original hypothesis. 

D. DISCUSSION OF RESULTS 

To compare the results of ONEGULP and MESA, we looked at the values each 

produced for F(1), the Side One objective function, and F(2), the Side Two objective 

function.  In 87 percent of the test cases, the MESA and ONEGULP values for F(1) were 

within 3 percent of each other.  These results fall into four categories:  

1. F(1) and F(2) in ONEGULP are smaller than F(1) and F(2) in MESA  

2. F(1) in ONEGULP is smaller than F(1) in MESA while F(2) in ONEGULP is 

larger than F(2) in MESA 

3. F(1) in ONEGULP is larger than F(1) in MESA while F(2) in ONEGULP is 

smaller than F(2) in MESA 

4. F(1) and F(2) in ONEGULP are larger than F(1) and F(2) in MESA.  

This discussion of the results will take each of these cases separately to show why 

the differences in the results of MESA and ONEGULP exist. 

1. Both Values Smaller in ONEGULP Than in MESA 
When the F(1) value in ONEGULP is smaller than the F(2) value in MESA, as it 

is in the first two categories, ONEGULP is simply coming up with a better allocation of 

Side One weapons than MESA.  As discussed previously, when MESA allocates 

weapons to an almost “pure” solution; the “pure” allocation of weapons results in an F 

value that is equal to or lower than (and therefore better than) the F value produced in 

MESA with the almost “pure” allocation.  Therefore, it is not surprising that we see a 

                                                                                                                                                 
7  The PkC notation is used to show that we are finding the max (Pk) in a given column (as defined by 

(Pk2).  The PkA notation is used to show that we are looking for the Pk of the optimal weapon allocation 
in a given row. 
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number of cases where the value of F(1) produced in ONEGULP is lower than the value 

of F(1) produced by MESA. 

In the case where both F(1) and F(2) in ONEGULP are lower than the 

corresponding values in MESA, the change from an almost “pure” allocation to a “pure” 

allocation of weapons results in a slight change in the number of weapons remaining for 

Side Two.  This change in the number of warheads remaining leads to a corresponding 

change in the allocation of weapons on Side Two, thus resulting in a slight change in 

F(2).  In all cases tested that fell into this category, the decrease in F(2) from MESA to 

ONEGULP was never more than 2 percent.  This slight decrease is explained by the 

correction of warhead allocation after the correction of the almost “pure” solution. 

2. ONEGULP’s F(1) Value Smaller and F(2) Value Larger Than MESA’s 
The second category defined above, where the value of F(1) in ONEGULP is 

smaller than in MESA and the value of F(2) in ONEGULP is larger than in MESA, 

typically occurs when there can be a number of weapon allocations that produce the same 

minimum F(1).  However, each of these allocations leaves Side Two in a different 

retaliatory position, which can cause dramatic differences in F(2) values.  Table 3 gives 

an example of the variance in F(2) obtained through different weapon allocations of the 

same arsenal.  The seed number refers to an input in MESA that just sets an arbitrary 

starting point in the allocation space where the algorithm will begin its search.  While 

there is no correlation between the seed number and the values in the table, there is a 

correlation between the weapon allocation of Side One and the value of F(1). 

While F(1) varies only from a minimum of 1204.75 to a maximum of 1216.33, 

F(2) values range from 1396.79 to 1855.04 with MESA and extends to 2153.95 with the 

ONEGULP output.  This variation in F(2) can be explained by looking at the warhead 

allocation of Side One.  As the ratio of counterforce to countervalue warheads decreases, 

the value of F(2) increases because losing a value target causes a larger increase in Side 

Two’s objective function than losing the indirect value of a force target, which equals 

Side Two’s λ   times that weapon’s Pk against Side One targets.  In this case, ONEGULP 

chooses the warhead allocation by Side One that not only minimizes F(1), but maximizes 

10 
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F(2).  Because Side One is on an indifference curve, he is able to make Side Two worse 

off without changing his own position. 

Table 3.  Variance in F(2) Along an Indifference Curvea 

Seed Number F(1) Value F(2) Value Counterforce WH 
firedb 

Countervalue WH 
Fired CF/CV Ratio 

490976 1209.07 1396.79 1983.90 1016.20 1.95 
102409 1211.09 1449.84 1914.30 1085.70 1.76 
248657 1212.91 1459.42 1901.20 1098.80 1.73 
748929 1208.88 1572.38 1756.50 1243.60 1.41 
949622 1213.21 1643.82 1662.30 1337.80 1.24 
27853 1211.96 1649.98 1654.80 1345.30 1.23 

918893 1216.33 1658.10 1642.60 1357.50 1.21 
436763 1214.07 1710.97 1575.00 1425.10 1.11 
662384 1211.98 1745.54 1531.00 1469.10 1.04 
645890 1207.98 1761.62 1511.70 1488.40 1.02 
156075 1204.75 1770.07 1502.00 1498.00 1.00 
500388 1214.41 1855.04 1388.20 1611.90 0.86 
AMPL 1204.76 2153.95 1004.70 1995.30 0.50 

a  Conditions used for this test: Side One: 3000 Weapons, 2500 Value Targets, λ  = 0.3; Side Two: 3000  
Weapons, 2500 Value Targets, λ  = 0.3 

b  Warhead allocation for side one. 

3. ONEGULP’s F(1) Value Larger and F(2) Value Smaller Than MESA’s 
The third category of results, where the F(1) value produced by ONEGULP is 

larger than the value produced in MESA and the F(2) value is smaller, occurred most 

often when λ  was small.  The weapon allocation of Side Two explains the reason we see 

this result.  In the MESA model for each of these cases, Side Two was not optimizing his 

objective function, thereby allowing Side One to do “better than his best” possible 

scenario, effectively lowering the Side One objective function and increasing Side Two’s 

objective function. 

The weapons exchange in these trials of MESA and ONEGULP is a two-sided 

exchange.  Side One fires all weapons that will help its objective function, after which 

Side Two fires all remaining weapons that will help its objective function.  Side One does 

not have the opportunity for retaliation in a third strike.  Because weapons offer no 

11 
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intrinsic value in the objective function, Side Two is essentially wasting any weapons it 

fires at Side One force targets.  If counterforce weapons fired by Side Two are allocated 

to value targets, DI will increase for Side Two while DS increases for Side One, thereby 

causing F(1) to go up while F(2) goes down.   

For all the cases in this category, the largest increase from F(1) in MESA to F(1) 

in ONEGULP was less than 3 percent.8  Figure 1 illustrates the relationship between the 

number of weapons Side Two fires at force targets and the value of F(1) for one arsenal 

with varying seed number.9  The ONEGULP value can be found in the upper left side of 

the chart, with zero warheads fired at counterforce targets by Side Two.  In contrast, 

MESA allocates a number of Side Two weapons against counterforce targets.  One can 

see that firing more warheads at counterforce targets instead of countervalue targets 

decreases Side One’s DS without increasing Side Two’s DI.  Thus, this allocation 

provides an explanation for the cases where the F(1) value for MESA is reported lower 

than the F(1) value for ONEGULP and the F(2) value reported is higher. 

1435

1440

1445

1450

1455

1460

0 20 40 60 80 100 120 140

Counterforce Weapons, Side Two

F(
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Figure 1.  F(1) Versus Side Two Weapons Fired Against Force Targets 

                                                 
8  All trials were initially run and percentages were calculated with a random seed of 748929. 
9  Conditions in this test: Side One: 2500 Weapons, 2000 Value Targets, λ   = 0.3; Side Two: 3000 

weapons, 3000 Value Targets, λ   = 0.3 
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4. Both Values Larger in ONEGULP Than in MESA 
The final category of results is the case where both F(1) and F(2) are larger in 

ONEGULP than the corresponding outputs in MESA.  As with the previous case, these 

outputs are the results of a misallocation of weapons.  It is important to note that both 

MESA and ONEGULP assume that an exchange of weapons will take place and that 

weapons will be fired at the opposition so as to inflict damage and avoid damage, in a 

relationship determined by that country’s λ .  Because of the definition of the objective 

function, it is very unlikely that a country will end up with a lower F value than its 

beginning F value.  If both sides fire all of their weapons into space, thus inflicting and 

suffering no damage, their F value will be λ * DG.  Once the weapons exchange begins, 

each side is trying to minimize DS - λ * DI.  Because it is unlikely that a country will have 

a λ near or above one, we can see that it will take a large amount of damage inflicted to 

cancel out the damage suffered.  This is to say that both programs try to minimize down 

from the F resulting from an unanswered attack, but F values less than this “minimum” 

are physically, if not logically, allowed.  MESA (and therefore ONEGULP) assumes that 

the exchange will take place.  Therefore, the results in this last category are a 

misallocation of weapons.  Because both sides assume that the other will be inflicting 

damage, they should not waste their own weapons by shooting them in a manner 

such that they will not optimally inflict (or avoid) damage.  In these cases, however, 

MESA is misallocating both Side One and Side Two weapons. 

It is worthwhile to note that the relationship between ONEGULP and MESA 

outputs varies as the seed number in MESA changes.  Table 4 shows an example where, 

with some seed numbers, the results fall into category three, while other seed numbers 

shift the results to the fourth category.  An advantage of ONEGULP is that the optimal 

allocation is found each time, not just a “close enough” answer.  Therefore, the 

ONEGULP results are the same on each run.  This continuity allows the user to 

understand the process by which ONEGULP solves an allocation. 
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Table 4.  Variation in Results with Varying Seed Numbera 

Seed Number F(1) F(2) 

748929 1767.68 1962.20 
288272 1807.08 2155.52 
817314 1808.66 1786.77 
659965 1808.91 1900.80 

ONEGULP 1809.74 2557.46 
459790 1812.36 1824.17 
58435 1815.12 2370.60 

353553 1815.58 2122.11 
a  Conditions for this test: Side One: 2500 Weapons, 4000 Targets,  
λ  = 0.3; Side Two: 3000 Weapons, 4000 Targets, λ  = 0.3 

 

In addition to aiding bidding strategy, ONEGULP can be applied to the control of 

networks, such as airfare or spectrum networks.  Taking airfare as an example, there are 

many paths among various cities with airports.  However, not all airlines operate along all 

paths.  Instead, they choose which paths will make the most money for them.  Therefore, 

less traveled paths end up with fewer, more expensive, flights than the more traveled 

flights.  Airlines must decide whether they should compete in the smaller markets where 

they can force competition, and force less profits on the part of their competitors, or if 

they should stick to the more popular routes.  The airline must decide the optimal 

allocation of its assets to be the most competitive. 

As these examples show, ONEGULP has applications that extend past nuclear 

exchanges.  It can be used to analyze many kinds of complex games. 
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II.  CONCLUSION 

The ONEGULP model, based on the premise that the weapon allocation problem 

should be completely linear, is able to produce answers that are as good as, or better than 

the outputs in MESA.  Additionally, ONEGULP operates at speeds up to three orders of 

magnitude faster than the MESA model.  The MESA model generates a run time of 10 

minutes to one hour for simple arsenals.  The range in run time is caused by a large 

output file in MESA.  MESA outputs are displayed in a series of about 30 files.  One of 

these files can be as large as 100,000 kB.  As MESA is run repeatedly, the size of the 

output files can increase MESA’s run time.  We ran ONEGULP through the AMPL 

website at http://www.ampl.com.  Through this website, a user can enter the coding, and 

the linear program will be solved in a matter of seconds.  This time measurement was our 

comparison for the ONEGULP program. 

The increased efficiency of the ONEGULP model over the MESA model can be 

quite valuable.  With the decreased run time, the multiple exchange of arsenals could be 

added without causing the program to be too time consuming.  Additional work could 

also be done to lift some of the constraints, namely the linearity of Pk.  While this 

constraint was helpful in making the allocation solvable by a linear program, it colors the 

allocation by not subtracting the cases when both warheads are successful against a given 

target. 

Additionally, the decreased run time can allow for a wider application of the 

concept.  There are many examples of hostile bidding and the control of networks where 

the same strategy is applied.  For example, professional sports teams choose the players 

they want to sign and trade.  When making these decisions, the team must consider not 

only how much a player is worth to the team, but also how much worth is being withheld 

from other teams by keeping the player on the team’s roster.  Similar examples can be 

seen with campaign expenditures and in corporate mergers and acquisitions. 

15 

 UNCLASSIFIED  

http://www.ampl.com/


 UNCLASSIFIED  

In addition to aiding bidding strategy, ONEGULP can be applied to the control of 

networks, such as airfare or spectrum networks.  Taking airfare as an example, there are 

many paths among various cities with airports.  However, not all airlines operate along all 

paths.  Instead, they choose which paths will make the most money for them.  Therefore, 

less traveled paths end up with fewer, more expensive, flights than the more traveled 

flights.  Airlines must decide whether they should compete in the smaller markets where 

they can force competition, and force less profits on the part of their competitors, or if 

they should stick to the more popular routes.  The airline must decide the optimal 

allocation of its assets to be the most competitive. 

As these examples show, ONEGULP has applications that extend past nuclear 

exchanges.  It can be used to analyze many kinds of complex games. 
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Appendix A 
MODEL FILE AND SAMPLE DATA FILE IN AMPL TO FIND 

OPTIMAL ALLOCATION OF SIDE TWO WEAPONS 

Model file: 
 
set target;     # targets being attacked 
set weapon;     # weapons used to attack 
param payout {weapon, target} >= 0;  # payout for each weapon at each target 
param supply {weapon} >= 0;   # number of each type of weapon 
param goal {target} >= 0;   # number of each type of target 
var allocation {weapon, target} >= 0;  # number of weapons allocated to each target 
maximize total_payout: 
 sum{i in weapon, j in target} payout[i,j] * allocation[i,j]; 
  # choose the allocation that maximizes the total payout 
subject to Demand{j in target}: 
 sum{i in weapon} allocation[i,j] <= 2*goal[j]; 
  # assigned warheads must be less than total number of targets 
subject to Supply{i in weapon}: 
 sum{j in target} allocation[i,j] <= supply[i]; 
  # assigned warheads must be less than the total number of warheads 
subject to Destroyed{j in target}: 
 sum{i in weapon} payout[i,j] * allocation[i,j] <= goal[j]; 
  # destroyed targets does not exceed total targets 
 
Sample data file: 
 
param payout: 
  t1 t2 := 
 w1 0.9 0.7 
 w2 0.8 0.3 ; 
  # columns represent targets, rows represent weapons 
param: weapon: supply :=    # number of weapons available 
 w1 100 
 w2 100 ; 
param: target: goal :=     # number of targets available 
 t1 100 
 t2 100 ; 
Output from AMPL: 
Objective Function = 150 
Allocation: 
  t1 t2 
 w1 0 100 
 w2 100 0 
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Appendix B 
CALCULATION OF SIDE ONE PAYOUT MATRIX 

λ: 0.3       
        

Pk Values (Calculated from DE and RD)     
 Side Two Force and Value Targets 
 

Side One  
Weapons w1 w2 w3 t1 t2 t3 

w1 0.35 0.40 0.50 0.75 0.85 0.50 
w2 0.35 0.28 0.60 0.75 0.85 0.50  
w3 0.26 0.42 0.10 0.62 0.77 0.50 

        
 Side One Value Targets    

 
Side Two  
Weapons t1 t2 t3 Calc of - ∆F - ∆F 

w1 0.90 0.70 0.50 0.9 - ( 0.9 - 0.7 ) 0.70 
w2 0.70 0.30 0.50 0.7 - ( 0.9 - 0.7 ) 0.50  
w3 0.40 0.40 0.80 0.8 - ( 0.8 - 0.8 ) 0.80 

        
Calculation of "Payout Matrix" Values     

 Side Two Force and Value Targets 
 

Side One 
 Weapons w1 w2 w3 t1 t2 t3 

w1 0.35*0.70 0.40*0.50 0.50*0.80 0.3*0.75 0.3*0.85 0.3*0.50 
w2 0.35*0.70 0.28*0.50 0.60*0.80 0.3*0.75 0.3*0.85 0.3*0.50  
w3 0.26*0.70 0.42*0.50 0.10*0.80 0.3*0.62 0.3*0.77 0.3*0.50 

        
"Payout Matrix" Values      

 Side Two Force and Value Targets 
 

Side One 
Weapons w1 w2 w3 t1 t2 t3 

w1 0.25 0.20 0.40 0.23 0.26 0.15 
w2 0.25 0.14 0.48 0.23 0.26 0.15  
w3 0.18 0.21 0.08 0.19 0.23 0.15 
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Appendix C 
ONEGULP MODEL AND SAMPLE DATA FILE FOR THE 

OPTIMAL ALLOCATION OF SIDE ONE WEAPONS 

Model File: 
 
set weapon1;      # warheads for each weapon type for side 1 
set side2;       # force and value targets for side 2 
 
param payoutw1vs2 {weapon1, side2} >= 0; # payout for each weapon vs each target 
param pkw1vs2 {weapon1, side2} >= 0;  # pk values for each weapon-target combo 
param supplyw1 {weapon1} >= 0;  # number of weapons available for side 1 
param targets2 {side2} >= 0;   # number of force and value targets on side 2 
param bases2 {side2} >= 0;   # number of bases of each target type for side 2 
param targets_per_base {side2} >= 0;  # number of WH or value targets at each base 
 check {j in side2}: targets2[j] = bases2[j] * targets_per_base[j]; 
 
var allocationw1vs2 {weapon1, side2} >= 0;  
  # allocation of side 1 weapons to side 2 force and value targets 
 
maximize total_payout: 
 sum{i in weapon1, j in side2} payoutw1vs2[i,j] * targets_per_base[j] * 
allocationw1vs2[i,j]; 
  # maximizes the damage avoided and the damage inflicted 
 
subject to Demand{j in side2}: 
 sum{i in weapon1} allocationw1vs2[i,j] <= 2*bases2[j]; 
  # no more than 2 warheads (WH) allocated per base 
subject to Supply{i in weapon1}: 
 sum{j in side2} allocationw1vs2[i,j] <= supplyw1[i]; 
  # WH fired does not exceed WH available 
subject to Destroyed{j in side2}: 
 sum{i in weapon1} pkw1vs2[i,j] * allocationw1vs2[i,j] * targets_per_base[j] <= 
targets2[j]; 
  # destroyed targets does not exceed total targets 
 
Data File: 
 
param payoutw1vs2: 
 w1 w2  w3 w4 w5 t1 t2 t3 := 
w1 0.31 0.31 0.00 0.72 0.72 0.04 0.25 0.00  
w2 0.31 0.31 0.00 0.72 0.72 0.04 0.25 0.00  
w3 0.23 0.23 0.00 0.72 0.72 0.03 0.25 0.00  
w4 0.23 0.23 0.00 0.72 0.72 0.03 0.25 0.00  
w5 0.00 0.00 0.00 0.72 0.72 0.06 0.25 0.00 ; 
  # payout matrix (calculated by method in Appendix B) 
  # columns represent Side Two targets, rows represent Side One weapons 
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param pkw1vs2: 
 w1 w2  w3 w4 w5 t1 t2 t3 := 
w1 0.37 0.37 0.00 0.85 0.85 0.12 0.85 0.00  
w2 0.37 0.37 0.00 0.85 0.85 0.12 0.85 0.00  
w3 0.27 0.27 0.00 0.85 0.85 0.09 0.85 0.00  
w4 0.27 0.27 0.00 0.85 0.85 0.09 0.85 0.00  
w5 0.00 0.00 0.00 0.85 0.85 0.19 0.85 0.00 ; 
  # Pks for Side One weapons against Side Two targets 
 
param: weapon1: supplyw1 :=  # number of Side One WH available 
 w1 500 
 w2 500 
 w3 500 
 w4 500 
 w5 1000 ; 
 
param: side2: targets2 :=  # number of Side Two targets 
 w1 500 
 w2 500 
 w3 500 
 w4 500 
 w5 1000 
 t1 1500 
 t2 1500 
 t3 0 ; 
 
param: bases2 :=    # number of bases for each target type 
 w1 500 
 w2 500 
 w3 1 
 w4 2 
 w5 2 
 t1 1500 
 t2 1500 
 t3 0 ; 
 
param: targets_per_base :=  # number of targets per base 
 w1 1 
 w2 1 
 w3 500 
 w4 250 
 w5 500 
 t1 1 
 t2 1 
 t3 0 ; 
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Appendix D 
GLOSSARY  

 
AMPL A Mathematical Programming Language 
ASCO Advanced Systems and Concepts Office 
 
DE damage expectancy 
DTRA Defense Threat Reduction Agency  
 
IDA Institute for Defense Analyses 
 
kB kilo bytes 
 
LANL Los Alamos National Laboratory 
 
MESA Multiple Exchange of Strategic Arsenals 
MHz megahertz 
 
ONEGULP Optimized Nuclear Exchange Games Using Linear Programming 
 
Pk probability of kill 
 
RD required damage 
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